
Chapter 6 cont…
Turing Machines

1

Turing Machines

Turing’s Thesis

2

Turing’s thesis:

Any computation carried out by mechanical
means can be performed by a Turing

3

means can be performed by a Turing
Machine

(1930)

Computer Science Law:

A computation is mechanical
if and only if
it can be performed by a Turing Machine

4

There is no known model of computation
more powerful than Turing Machines

When we say:
There exists an algorithm

Algorithms are Turing Machines

5

There exists an algorithm

We mean:

There exists a Turing Machine
that executes the algorithm

Undecidability

6

– RE languages are accepted (recognized) by TM’s.
– RE languages may be grouped into two classes:

• Class 1 (recursive language) --- each language L
in this class has a TM (thought as an algorithm)
which not only accepts strings of L, but also
tells us what strings are not in L by halting.tells us what strings are not in L by halting.

• Class 2 (RE but not recursive) --- each language
L in this class has a TM (not thought as an
algorithm) which accepts strings of L, but may
not halt when a given input string is not in L.

7

– Formally, a language L is recursive if L = L(M)
for some TM M such that:

(1) If wL, then M accepts (and
therefore halts).
(2) If w L, then M eventually halts, (2) If wL, then M eventually halts,
although it never enters an accepting
state (i.e., “reject”) .

– A TM of this type corresponds to the formal
notion of algorithm.

8

Church-Turing Thesis

• A Turing machine that halts on all inputs is
the precise formal notion corresponding to
the intuitive notion of an algorithm.

• An “algorithm” means a precisely defined • An “algorithm” means a precisely defined
set of instructions

• This thesis cannot be formally proven

9

Consequence of Church-Turing Thesis:

If a problem cannot be solved by a Turing
machine then it cannot be solved by a human
using a precisely defined sequence of
instructionsinstructions

10

A given language L, regarded as a problem,
is called decidable if L is a recursive
language; and undecidable if not.

The existence or nonexistence of an
algorithm to solve a problem (i.e., the problem

11

algorithm to solve a problem (i.e., the problem
is decidable or undecidable) is more important
than the existence or nonexistence of a TM
to solve the problem.

Recall that:
A language is decidable,
if there is a Turing machine (decider)
that accepts the language and
halts on every input string

A
M

A

Decision

Decidable Languages

12

halts on every input string

Turing Machine

Input
string

Accept

Reject

M

Decider for A

Decision
On Halt:

YES

NO

A computational problem is decidable
if the corresponding language is decidable

13

We also say that the problem is solvable

Undecidable Languages

there is no Turing Machine

undecidable language = not decidable language

There is no decider:

14

there is no Turing Machine
which accepts the language
and makes a decision (halts)
for every input string

(machine may make decision for some input strings)

For an undecidable language,the corresponding
problem is undecidable (unsolvable):

There is no Turing Machine (Algorithm)

15

There is no Turing Machine (Algorithm)
that gives an answer (yes or no)
for every input instance

(answer may be given for some input instances)

Remember that there are undecidable
languages (i.e. also undecidable problems):

Turing-Acceptable L
L

16

Decidable

L is Turing-Acceptable and undecidable

We will prove that two particular problems
are unsolvable:

Membership problem

17

Halting problem

Proofs of Decidability

How can you prove a language is decidable?

18

What Decidable Means

A language L is decidable if there exists a
TM M such that for all strings w:
– If w  L, M enters qAccept.
– If w  L, M enters qReject.

To prove a language is decidable, we can To prove a language is decidable, we can
show how to construct a TM that decides it.

For a correct proof, need a convincing argument
that the TM always eventually accepts or rejects
any input.

19

Proofs of Undecidability

To prove a language is undecidable, need to
show there is no Turing Machine that can
decide the language.

This is hard: requires reasoning about all
possible TMs.

20

Reducibility

21

Reducibility

Reducibility
• Method for proving that problems are

computationally unsolvable.

• A reduction is a way of converting one • A reduction is a way of converting one
problem to another problem in such a way
that a solution to the second problem can
be used to solve the first problem.

22

Reduction
Let’s say we want to solve problem of class A
and we know how to solve problems of class B
 If for every problem of class A, we can find a

way to convert it some problem of class B, ...

then, we can solve all problems of class A using our

23

then, we can solve all problems of class A using our
method for solving problems of class B.

 We can also talk about how much effort is needed
to transform the problem. For most of what we
are interested in here, it is enough that the
transformation can be computed by a Turing
machine.

Proof by Reduction

1. We know X does not exist.
(e.g., X = a TM that can decide ATM)X

2. Assume Y exists.2. Assume Y exists.
(e.g., Y = a TM that can decide B)

Y

3. Show how to use Y to make X.
4. Since X does not exist, but Y could be used
to make X, then Y must not exist.

24

Reduction Proofs

Breduces to A

A reduces to B

means
Y

that can solve B
can be used to make X

that can solve A

Hence, A is not a harder problem than B.

25

Converse?

Y

that can solve B

can be used to make X
that can solve A

A reduces to B

A is not a harder problem than B.

Does this mean B is as hard as A?

No! Y can be any solver for B. X is one
solver for A. There might be easier solvers
for A.

26

Generally…
• Reducibility plays an important role in

classifying problems by decidability, and later
in complexity theory as well.

• When A is reducible to B, solving A cannot be
harder than solving B because a solution to B
gives a solution to A. gives a solution to A.

• In terms of computability theory, if A is
reducible to B and B is decidable, A also is
decidable. Equivalently, if A is undecidable and
reducible to B, B is undecidable.

• This last version is key to proving that various
problems are undecidable.

27

