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Turing Machines
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Turing Machines



Turing’s Thesis
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Turing’s thesis:

Any computation  carried out by mechanical 
means can be performed by a Turing 
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means can be performed by a Turing 
Machine

(1930)



Computer Science Law:

A computation is mechanical 
if and only if
it can be performed by a Turing Machine
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There is no known model of computation
more powerful than Turing Machines



When we say:
There exists an algorithm

Algorithms are Turing Machines
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There exists an algorithm

We mean:

There exists a Turing Machine
that executes the algorithm



Undecidability
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– RE languages are accepted (recognized) by TM’s.
– RE languages may be grouped into two classes:

• Class 1 (recursive language) --- each language L
in this class has a TM (thought as an algorithm) 
which not only accepts strings of L, but also 
tells us what strings are not in L by halting.tells us what strings are not in L by halting.

• Class 2 (RE but not recursive) --- each language 
L in this class has a TM (not thought as an 
algorithm) which accepts strings of L, but may 
not halt when a given input string is not in L.
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– Formally, a language L is recursive if L = L(M) 
for some TM M such that:

(1)  If wL, then M accepts (and 
therefore  halts).
(2)  If w L, then M eventually halts, (2)  If wL, then M eventually halts, 
although it never enters an accepting 
state (i.e., “reject” ) .

– A TM of this type corresponds to the formal 
notion of algorithm.
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Church-Turing Thesis

• A Turing machine that halts on all inputs is 
the precise formal notion corresponding to 
the intuitive notion of an algorithm.

• An “algorithm” means a precisely defined • An “algorithm” means a precisely defined 
set of instructions

• This thesis cannot be formally proven
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Consequence of Church-Turing Thesis: 

If a problem cannot be solved by a Turing
machine then it cannot be solved by a human
using a precisely defined sequence of
instructionsinstructions
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A given language L, regarded as a problem,
is called decidable if L is a recursive 
language; and undecidable if not.  

The existence or nonexistence of an 
algorithm to solve a problem (i.e., the problem 
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algorithm to solve a problem (i.e., the problem 
is decidable or undecidable) is more important
than the existence or nonexistence of a TM 
to solve the problem.



Recall that:
A language      is decidable,
if there is a Turing machine      (decider)
that accepts the language       and
halts on every input string

A
M
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Decidable Languages
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halts on every input string
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A computational problem is decidable
if the corresponding language is decidable
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We also say that the problem is solvable



Undecidable Languages

there is no Turing Machine 

undecidable language = not decidable language

There is no decider:
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there is no Turing Machine 
which accepts the language 
and makes a decision (halts)
for every input string

(machine may make decision for some input strings)



For an undecidable language,the corresponding 
problem is undecidable (unsolvable):

There is no Turing Machine (Algorithm)
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There is no Turing Machine (Algorithm)
that gives an answer (yes or no) 
for every input instance

(answer may be given for some input instances)



Remember that there are  undecidable 
languages (i.e. also undecidable problems):

Turing-Acceptable L
L
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Decidable

L is Turing-Acceptable and undecidable



We will prove that two particular problems
are unsolvable:

Membership problem
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Halting problem



Proofs of Decidability

How can you prove a language is decidable?
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What Decidable Means

A language L is decidable if there exists a 
TM M such that for all strings w:
– If w  L, M enters qAccept.
– If w  L, M enters qReject.

To prove a language is decidable, we can To prove a language is decidable, we can 
show how to construct a TM that decides it.

For a correct proof, need a convincing argument 
that the TM always eventually accepts or rejects 
any input.
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Proofs of Undecidability

To prove a language is undecidable, need to 
show there is no Turing Machine that can 
decide the language.

This is hard: requires reasoning about all
possible TMs.
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Reducibility
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Reducibility



Reducibility
• Method for proving that problems are 

computationally unsolvable. 

• A reduction is a way of converting one • A reduction is a way of converting one 
problem to another problem in such a way 
that a solution to the second problem can 
be used to solve the first problem.
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Reduction
Let’s say we want to solve problem of class A
and we know how to solve problems of class B
 If for every problem of class A, we can find a 

way to convert it some problem of class B, ...

then, we can solve all problems of class A using our 
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then, we can solve all problems of class A using our 
method for solving problems of class B.

 We can also talk about how much effort is needed 
to transform the problem. For most of what we 
are interested in here, it is enough that the 
transformation can be computed by a Turing 
machine.



Proof by Reduction

1. We know X does not exist.
(e.g., X = a TM that can decide ATM )X

2. Assume Y exists.2. Assume Y exists.
(e.g., Y = a TM that can decide B)

Y

3. Show how to use Y to make X.
4. Since X does not exist, but Y could be used 
to make X, then Y must not exist.
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Reduction Proofs

Breduces to   A

A reduces to B

means
Y

that can solve B
can be used to make  X

that can solve A

Hence, A is not a harder problem than B.
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Converse?

Y

that can solve B

can be used to make  X
that can solve A

A reduces to B

A is not a harder problem than B.

Does this mean B is as hard as A?

No! Y can be any solver for B.  X is one
solver for A. There might be easier solvers 
for A.
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Generally…
• Reducibility plays an important role in 

classifying problems by decidability, and later 
in complexity theory as well. 

• When A is reducible to B, solving A cannot be 
harder than solving B because a solution to B 
gives a solution to A. gives a solution to A. 

• In terms of computability theory, if A is 
reducible to B and B is decidable, A also is 
decidable. Equivalently, if A is undecidable and 
reducible to B, B is undecidable.

• This last version is key to proving that various 
problems are undecidable.
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